Fun Facts First:

the HP32E uses two pettily different versions of the constant $\frac{1}{\sqrt{2 \pi}}$,
0,398942280444 and
0, 398942280385 .

Q^{-1} Function of HP32E

The HP32E is one of the few models that offers besides the Q function, the cumulative distribution function (CDF) of the standard normal distribution, also its reversal, Q^{-1}, the inverse cumulative distribution function, aka probit, or the quantile function associated with the standard normal distribution. (For its graph click here.)

In other words, for input $x \ldots$
$p=\Phi(z) \quad$ on $32 \mathrm{E}: \quad \mathrm{Q}(\mathrm{x})$
$z_{p}=\Phi^{-1}(p) \quad$ on $32 \mathrm{E}: \quad Q^{-1}(x) \quad$ or: $x \stackrel{!}{=} Q(z)$

The Details

Analysing trace logs made with Tony's HP Classic Calculator Emulator Plus I found, the HP32E uses its approximations of Q to solve numerically $x-\mathrm{Q}(\mathrm{z})=0$ for z , thus $\mathrm{Q}-1(\mathrm{x})$. The Q^{-1} function is split in three parts (special cases input $<0,=0$, $=1$, and >1 are sorted out first), one for the input range $] 0 . .0,1[$ (part 1) and next from $[0,1 \ldots 0,9[$ (part 2). The third range [$0,9 . .1$ [is "folded down" to part 1 using the function's symmetry. (The limits 0,1 and 0,9 correspond to those $\pm 1,28$ of Q, dividing the scope correspondingly.)

Q^{-1} Part 1 and 3

Prepare first loop...
if $0<x<0,1=>$ part 1 ,
if $0,9<=x<1=>$ part 3 , remember for later
if part 3 set $x:=1-x$
$p=\sqrt{\left(-\ln \left(x^{2}\right)\right.}$
$q=p-\frac{6,1}{13+p-\frac{94}{p+8}} \approx \sqrt{\ln \frac{1}{x^{2}}-\ln \ln \frac{1}{x^{2}}-\ln (2 \pi)}+o(1)$
— it's amazing close (or just sufficing?) to the asymptotic expansion (for small input).

But then, alas:
$z_{0}=q^{2} / 2 \quad$ the initial guess, an error, should be q
$h_{0}=e^{z_{0}} \quad$ when righting above error use $e^{q^{2} / 2}$
begin...
r_{n} as in "Q_part 2" but computed with z_{n-1} instead of $|x|$
$s_{n}=1 /\left(z_{n-1}+b_{2}+r_{n}\right) \quad$ with $b_{2}=-3,8052 \mathrm{E}-8$
$t_{n}=x \cdot h_{n-1} / a_{1} \quad$ with $a_{1}=0,398942280444$
$k_{n}=z_{n-1}\left(t_{n}-s_{n}\right) \quad$ or: $\sqrt{2 \pi} \cdot h \cdot z \cdot(x-Q(z))$
$h_{n}=h_{n-1} /\left(1+k_{n}\right)$
$z_{n}=\sqrt{2 \ln \left(h_{n}\right)} \quad$ or: $\sqrt{z^{2}-2 \ln (1+k)}$
loop while $\left|k_{n}\right|>1 \mathrm{E}-10$
if part 3 set $z:=-z$

Part 2

For input $0,1<=x<0,9$ it goes like this:
Prepare first loop...
$s=x-0,5$
$z_{0}=s / b_{1} \quad$ the initial guess, $b_{1}=0,398942280385$
begin...
$t_{n}=z_{n-1}^{2} / 2$
$u_{n}=Q\left(z_{n-1}\right)-0,5$
$w_{n}=\left(u_{n}-s\right) \cdot e^{t_{n}} / b_{1}$
$z_{n}=z_{n-1}-w_{n}$
loop while $\left|w_{n}\right|>1 \mathrm{E}-10$

Lessons Learned?

Trace logs enable to detect the inbuilt algorithms rather mechanically, but to recognize the maths principle behind a procedure needs a bit more than just know-how, some know-why would help.

Part 2 is Newton's method, completely as in every maths standard textbook. $e^{t_{n}} / b_{1}$ is the reciprocal value of the Q function's derivative. Got it, ticked it.

For part 1 - sorry, no idea (yet). I am able to spot the $(x-Q(z))$ step, I am able to copy the procedure to another system (and it works), I did find an error in first valuation of z (what is ironed out with one or two more iterations), but in contrast to part 2 I do miss the eureka moment.

