Fun Facts First:

1
the HP32E uses two pettily different versions of the constant o
T

0,398942280444 and
0,398942280385.

Q! Function of HP32E

The HP32E is one of the few models that offers besides the @) function, the cumulative distribution function (CDF) of the
standard normal distribution, also its reversal, Q !, the inverse cumulative distribution function, aka probit, or the quantile
function associated with the standard normal distribution. (For its graph click here.)

In other words, for input «...

p=2(2) on 32E: Q(x)
2, =% (p) on32E: Q '(z) or: z = Q(z)

The Details

Analysing trace logs made with Tony's HP Classic Calculator Emulator Plus I found, the HP32E uses its approximations of
Q to solve numerically z — Q(z) = 0 for z, thus Q-1(x). The Q! function is split in three parts (special cases input<0, =0,
=1, and >1 are sorted out first), one for the input range]0..0,1[(part 1) and next from [0,1..0,9[(part 2). The third range
[0,9..1] is "folded down" to part 1 using the function's symmetry. (The limits 0,1 and 0,9 correspond to those 41,28 of @,
dividing the scope correspondingly.)

Q! Part1and3

Prepare first loop...

if 0<z<0,1=>partl,

if 0,9 <=z < 1 =>part 3, remember for later
ifpart3setz:=1—=z

p=4/(-In(a?)

6,1 1 1
g=p—-—— ~ \/ln— —Inln— — In(27) 4+ o(1)
x? z?

— it's amazing close (or just sufficing?) to the asymptotic expansion (for small input).

REDUCE Plot

6,1 , .
green: ¢ =p— ————g1— with p=+/—2In ()

B+p—-—
p+0o

1
red: v}lnﬁ —In lnﬁ — In (2m)

But then, alas:

https://upload.wikimedia.org/wikipedia/commons/9/9b/Probit_plot.png
https://upload.wikimedia.org/wikipedia/commons/9/9b/Probit_plot.png
https://teenix.org/
https://teenix.org/
https://en.wikipedia.org/wiki/Normal_distribution#Quantile_function
https://en.wikipedia.org/wiki/Normal_distribution#Quantile_function

20 = ¢q?/2 the initial guess, an error, should be ¢

hy = € when righting above error use et’/2

begin...
rn, as in "Q_part 2" but computed with z,,_; instead of |z|
sp=1/(zp-1 + by +7r,) with by = -3,8052E-8
thn =2 hp_1/a; with a; = 0,398942280444
kn = zp_1(tn — sn) or: 2m - h-z- (z — Q(2))

zn = 4/21n(hy,) or: /22 —2In(1 + k)
loop while |k, | > 1E-10
ifpart 3 set z := —2

Part 2
Forinput 0,1 <=z < 0,9 it goes like this:

Prepare first loop...

s=xz—0,5
zo = /by the initial guess, by = 0,398942280385
begin...

ty =22 ,/2

Up = Q(zn—l) - Oa 5
wyp = (u, — 8) - /by
Zp = Zp—1 — Wp

loop while |w,| > 1E-10

Lessons Learned?

Trace logs enable to detect the inbuilt algorithms rather mechanically, but to recognize the maths principle behind a
procedure needs a bit more than just know-how, some know-why would help.

Part 2 is Newton's method, completely as in every maths standard textbook. e’ /b, is the reciprocal value of the Q
function's derivative. Got it, ticked it.

For part 1 — sorry, no idea (yet). I am able to spot the (z — Q(z)) step, I am able to copy the procedure to another system
(and it works), I did find an error in first valuation of z (what is ironed out with one or two more iterations), but in contrast
to part 2 I do miss the eureka moment.

https://forum.hp41.org/viewtopic.php?f=10&t=427
https://forum.hp41.org/viewtopic.php?f=10&t=427

