
A Pocket Calculator for Computer
Science · Professionals
This compact, yet powerful pocket calculator is designed
for technical professionals working in computer science
and digital electronics. Boolean operations and bit
manipulation are some of its capabilities.

by Eric A. Evett

LOGIC DESIGN and computer programming require
mathematical operations not ordinarily provided by
small calculators . A large amount of tedious paper­

work is often required to convert among number bases,
perform logic operations, shift and rotate bits in a word, or
check processor instruction flow. To simplify such work,
Hewlett-Packard recently introduced a programmable pock­
et calculator especially designed for people who deal with
bits . The HP-16C (Fig. 1), like other HP calculators , uses a
reverse-Polish-notation (RPN) system and provides stan­
dard floating-point decimal arithmetic (including square
root) . Its novel capabilities become apparent, however,
when the HP-16C is switched into the integer mode. Only
integers are allowed in this mode, and they can be keyed in
and displayed in either hexadecimal, octal, binary, or dec­
imal format. In this mode, number base conversion, integer
arithmetic, logical operations, and bit manipulations can be
done.

36 HEWLETT-PACKARD JOURNAL MAY 1983

Integer Mode
In the integer mode, all numbers are represented inter­

nally in binary form . The w ord size is selected by the user
and can range from 1 to 64 bits. The user also can select
whether the numbers are to be interpreted as one's com­
plement, two's complement, or unsigned integers . In the
unsigned integer mode with a 64-bit word size, numbers up
to 264 - 1 (18,446 ,744,073 ,709 ,551 ,615) can be represented.
Although the HP-16C normally displays the eight least­
significant digits of a number, a scrolling capability is pro­
vided to display higher-order digits.

Programming
In addition to the four-register RPN stack, 203 bytes of

user memory are available for storing program steps and use
as storage registers. When the program memory is cleared,
all 20 3 bytes are allocated to storage registers. The number
of storage registers available depends on the selected word

Fig. 1. The HP-16C Programma­
ble Calculator is designed for
computer science and digital elec­
tronics applications. Besides the
normal four- function calculator
features , it has a number of
capabilities for setting number
bases and word sizes, performing
Boolean operations , and ma­
nipulating bits.

Real (Floating-Point) Format
Real numbers are represented in the HP 3000 memory by 32

bits (two consecutive 16-bit words) separated into three fields.
These fields are the sign, the exponent, and the mantissa. The
format is known as excess 256. Thus, a real number consists of
(see Fig. 1):

binary point. Floating-point zero is the only exception. It is
represented by all 32 bits being zero.

• Sign (S), bit Oofthefirst 16-bitword. Positive=O, negative=1. A
value X and its negative - X differ only in the value of the sign
bit.

The range of nonzero real values for this format is fromO.863617
x 1 0- 77 to 0.1 157920x 1 078. The formula for computing the dec­
imal value of a floating-point representation is: Decimal value =
(-1)Sx2 E- 256 x F.

• Exponent (E), bits 1 through 9 of the first 16-bit word . The
exponent ranges from 0 to 777 octal (511 decimal). This
number represents a binary exponent biased by 400 octal (256
decimal). The true exponent, therefore is E-256; it ranges from
- 256 to +255.

Fraction
(Bits

10 to 15) (Bits 0 to 15)

'!

First 16-Blt Word Second 16-Blt Word
• Fraction (F), a binary number of the form 1 .xxx, where xxx

represents 22 bits stored in bits 10 through 15 of the firsi 16-bit
word and all bits of the second 16-bit word. Note that the 1
is not actually stored, there is an assumed 1 to the left of the

Fig. 1. Diagram of real (floating-point) format used in the HP
3000.

aa
ElM ..
11111
-M
EmIli

Set two's complement mode.

Convert to octal Integer mode,
and return Integers y and x
such that 2xy =orlglnal Input.

Leading zeros will be displayed.

Was Input O?

If yes, then branch to Label l.

_ Bias exponent. 287=256+31

EliiID Store biased exponent In Index register.

... Swap exponent and mantissa.

ElII Set flag O.

_:'1' Mantissa negative?

ElII If yes, clear flag O.

•. ,+W Absolute value of mantissa.

F .• . ,.
MWi' Sat word slza to 32. -. ,. . ,.
_ Round mantlasa to 23 bits.

M* -

'UN3. Create mask of 23 bits, left-justified.

-w·-
DIll
+WM

aD

Extract upper 23 bits.

Old round cause a carry-out
of most significant bit?

If yes, Increment exponent.

Shift off Implied 1 bit.

Recall biased exponent. .'1;- Concatenate exponent to fraction part.

mil Is mantissa sign to be positive?

all If yes, branch to Labell. --81:+ Set the sign bit.

all -M*
Rotate sign, exponent, and fraction
to proper poSition.

Store the 32-blt result In register O .

.1&i' Change word size to 16 bits .

_.. Recall 18-blt word 1 .

BII Recall 16-blt word 2.

-;iii- Fig. 2. Outline of HP- 16C sub­
routine to convert numbers given
in the HP 3000 Computer's rear
format to decimal floating-point
format.

MAY 1983 HEWLETT· PACKARD J6URNAL37

Using the HP-16C

Listing the features of a programmable calculator rarely pro­
vides a complete picture of its capabilities. Examples of the appli­
cation of the calculator's features are often requ ired to de­
monstrate to the user what can be done and why a particular
feature is useful. Hence, several examples of the use of the
HP-16C are given below.

Add with Carry
The HP-16C can be programmed to s imulate instructions

commonly found in commercial processors . The following sub­
routine performs an add with carry (Y+X+C-X). It adds the
numbers in reg isters X and Y along with the carry bit indicated by
the state of flag 4 and returns the result in the X register. The carry
flag is set (indicated by the C annunc iator in the display) if there is
a carry-out of the most sign ificant bit of the result.

001 LBL A Labels subroutine
002 0
003 RLC Generates 0 or 1 depend ing on carry flag
004 + Ad ds carry to second operand
005 CF 0
006 F? 4 Copies carry flag 4 to flag 0
007 SF 0
008 + Adds first operand to the total
009 F? 0
010 SF 4 Sets carry flag if first add carried
011 RTN

To use th is routine, enter the two operands in registers Y and X,
and press GSB A.

size. When the word size is eight bits, 203 registers are
available; a 16-bit word size results in 101 available regis­
ters, and so on. Each programmable instruction takes one
byte of memory. As program steps are inserted, the number
of available storage registers decreases . A program can have
up to 203 steps if no storage registers are required.

Editing capabilities to make program development easier
include insert, delete, back-step, single-step, and go-to­
line-number operations. The user may single-step through
program execution to help debug programs. Other pro­
gramming features include label addressing (sixteen
labels). subroutines (up to four levels deep), conditional
tests , branching, and six user flags.

These flags can be set, cleared, and tested under program
control. Three of the flags are special. Leading zero digits in
a word are suppressed in the display unless flag 3 is set. Flag
4 is the carry flag, and flag 5 is the overflow flag. Two
annunciators in the display (C for carry and G for> largest
representable number) give a visual indication of the
state of flags 4 and 5, respectively. The overflow flag is
set if the true result of an operation cannot be represented
in the selected word size and complement mode. The
carry flag is set under various conditions, depending on
the operation. For example, addition sets the carry flag
if there is a carry-out of the most significant bit; other­
wise the carry is cleared (see box above for examples).
The shift-left instruction sets the carry if a 1 bit is shifted

38 HEWLEn-PACKARD JOURNAL MAY 1983

Example:
2'S

HEX
8
WSIZE

CF 4
FE
ENTER
72
GSBA

Bit Extraction

Set two's complement mode
Set number base to hexadecimal

Set word size to 8
Clear carry flag
First operand
Enter first operand into Y reg ister
Second operand
Displays 70 (FE+ 72+0)
with carry set (C annunciator on)

The following subroutine extracts a field from a bit pattern. The
field is specified by the bit numbers of the pattern corresponding
to the lowest-order and highest-order bits of the field . The least­
significant bit of the bit pattern is bit numberO. Hence, the result in
the X register is the bits of the pattern in the Z register from the bit
number in the Y register to the bit number in the X register,
inclusive.

001 LBL B Labels subroutine
002 R~ Bring down value in Y reg ister
003 RRn Right-justifies field
004 Ri Raise stack
005 LST x Recall Y value
006 Subtract Y from X
007
008 + Computes number of bits in field
009 MASKR Creates mask same width as field
010 AND Extracts fie ld
011 HEX Exits in the hexadec imal mode
012 RTN

off the left end of the word; otherwise the carry is cleared.

Logic Operations
The rich selection of bit manipulation and logical opera­

tions, along with user-selectable complement mode and
word size, make the HP-16C a flexible logic and program
design tool. Programs can be written to simulate individual
instructions commonly found on commercial processors, to
extract a field from a bit pattern, Dr to convert from Dne
numeric format to another.

A common problem is the conversion between the inter­
nal binary floating- point format of a particular machine and
decimal floating-point format. The HP-16C provides a fea­
ture that can be used to great advantage in programs de­
signed to perform such conversions. This feature provides a
mode for performing standard decimal floating-point cal­
culations. Upon switching from the integer mode to deci­
mal floating-point mode (by using the FLOAT function) , the
integers y and x in the Y and X stack registers are converted
to the floating-point equivalent of 2'1', which is then placed
in the X register and displayed . Converting back to integer
mode (by pressing the HEX, DEC, OCT, or BIN keys). causes
the contents of the X register to be converted to a pair of
integers y and x such that y is a 32-bit integer (231~ Iy I <2 32

unless y=O) and 2'1' is equal to the value in the X register
before mode conversion. The integers y and x are then
placed in the Y and X registers.

To use this routine, the user places the bit pattern in register Z, the
number of the lowest-order bit in the field in register Y, and the
number of the highest-order bit in the field in re'gister X. The user
then presses GSB B.

Example: Extract bits 2 through 5 from 3916 (00111001).

8
WSIZE

HEX
3g

ENTER

2
ENTER

5

GSB B

Set wordsize to 8
Set hexadec imal mode
Bit pattern

Lowest-order bit

Highest-order bit
Displays E (1110) as result.

Conversion Between Binary and Gray Code
Gray code has the property that only one bit changes between

the representations of any two adjacent numbers. If the word size
is n bits, then binary-to-Gray-code conversion is given by

G1 = B1 XOR B2

where G is the Gray code number, B is the binary number, and
subscript 0 indicates the least-significant bit of G and B, subscript
1 indicates the next least-significant bit, and so forth.

The Gray-code-to-binary conversion is given by

Bo = Go XOR G1 XOR . Gn- 1

B1 = G1 XOR G2 XOR • Gn- 1

Bn- 1 = Gn- 1

Binary-to-Gray-code subroutine:

001 LBL C

002 ENTER Copies binary number to Y register
003 SR Shifts binary number in X register to

the right
004 XOR Computes Gray-code equivalent
005 RTN

Gray-to-binary-code subroutine:

001 LBL 0
002 ENTER Copies Gray code number to Y register
003

004

005

006

007

008
OOg

010

·LBL 2

SR

XOR

LST x
x;l:o
GTO 2

R ~

RTN

Shift Gray code number in X register to
the right

Exclusive OR operation
Recall previous number
Loop until Gray code number is 0

To use these routines , the user sets the HP-16C to the binary
mode by pressing BIN, places the number in the X register and
presses GSB C for binary-to-Gray or GSB 0 for Gray-to-binary- I
code conversions. ----_.

Extract biased exponent part.

Wilt_ Set hexadecimal base mode. Recover fraction part.

Set two's complement mode.

Set bit 23 (the Implied 1-blt). Bit 0
Is the least signlflcant.

-MM' Set word size to 32 bits.

Swap word 1 and word 2.

Shift word 1 16 bits to left.

M'I;+ Concatenate word 2 to word 1.

Wi- Shift, sign bit left Into carry flag.

'@d;'
. ,. Is Input O?

&mil If yes, branch to Label O. -
Craate mask of 23 bits, rlght-justlfled. .W·. Extract fraction part.

II Test carry flag. Was sign bit negative?

IlMl!I!!fl"IfJl!lWIIIIIII If yes, complement mantissa.

8M;- Arlthmatlc shift right mantissa 1 bit.

11311

Swap mantissa and exponent part.

Rotate exponent part 9 bits left,
placing It at right end.

Unblas exponent. E-278=E-256-32

Iml Compute 2><y

Fig. 3. Outline of HP-1 6C sub­
routine to convert decimal
floating-point numbers into the
format used by HP 3000 Comput­
ers.

I

MAY 1983 HEWLETI-PACKARD JOURNAL 39

The subroutines listed in Fig. 2 and Fig. 3 convert be­
tween the HP 3000 Computer's FORTRAN real (floating­
point) formaF and decimal floating-point format (see box
on page 37). Because the HP-16C views bit 0 as the least
significant bit of a word and the HP 3000 views it as the
most significant bit, some of the steps listed in Fig. 2 and
Fig . 3 are used to convert between these two opposing
views.

To use these programs after they are entered in the HP-
16C, a user performs the following steps.
II HP 3000 to decimal:

1. Select octal base (OCT).
2. Enter word 1 in the Y register and word 2 in the X

register.
3. Execute GSB B. Answer is displayed.
4. Repeat steps 1, 2, and 3 for each new conversion.

II Decimal to HP 3000:
1. Select decimal floating-point mode (FLOAT 4) .
2. Enter number in the X register.
3. Execute GSB A. Word 1 is placed in the Y register,

word 2 in the X register.
4. Repeat steps 1, 2, and 3 for each new conversion.

Acknowledgments
Several people made significant contributions to the

HP-16C software effort. John Van Boxtel developed many of
the fundamental design concepts. Rich Carone also contri­
buted to the software design and coded the complex

Hewlett-Packard Company, 3000 Hanover
Street. Palo Alto, California 94304

routines that format and build the display. Stan Blascow
did a large portion of the software testing and Diana Roy
wrote the owner's handbook.

References
1. M.E. Sloan, Computer Hardware and Organization, Science
Research Associates, Inc. , 1976, pp 95-97 .
2. FORTRAN Reference Manual , HP 3000 Computer Systems,
Hewlett-Packard, Santa Clara, 1978, Section II.

Eric A. Evett
Eric Evett received the BS and MS de­
grees in mathematics from the Univer­
sity of Arizona in 1970 and 1972. He
taught mathematics there until 1975
and then spent three years developing
software for calculators before joining
HP in late 1978. Eric wrote portions of
the microcode forthe HP-11 C, HP-15C,
and HP-16C Calculators and now is an
R&D software project manager at HP's
Corvallis, Oregon facil ity. He was born
in Colfax, Washington, and now lives in
Corvallis . He is married and has two
sons. His outside interests include
jogging, hiking, basketball , reading ,

movies, and tennis (he played on his college's tennis team which
was then ranked 7th in the U.S.A.).

CORRECTION

In the March issue. the Pascal statements at the top of the back page were printed in the
wrong order. Here is the correct version.

buffer [w]:=getch;

c: =c +a[buffer [w]] ;

w:=w+1;

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

CHANGE OF ADDRESS: To change your address or delete your name from our mailing list please send us your old address label. Send
changes 10 Hewlen-Packard Journal, 3000 Hanover Street. Palo Alto, California 94304 U.S.A. ,Allow 60 days.

5953-8511

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

